Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(11): e0055823, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905826

RESUMO

We present the complete genome sequence of Enterococcus faecalis strain HL1, isolated from infant feces. E. faecalis gains significant attention for its therapeutic potential. The genome of E. faecalis HL1 consists of a 2.7 Mb circular chromosome with no plasmids, and it contains a total of 2,546 predicted coding genes.

2.
Plant Dis ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682224

RESUMO

The romaine lettuce (Lactuca sativa L.) is one of the most frequently consumed vegetables in Korea. In January 2023, the romaine lettuce cultured within an indoor hydroponic farm in South Korea displayed severe disease, with an incidence of approximately 13.7% of 300 plants. The diseased plants showed symptoms of stunted growth, lower leaf yellowing, and brown or black-colored soft and mushy root rot, in which the outer layer of root was sloughed off, leaving a thread-like appearance. These symptoms were similar to those of Pythium root rot previously reported to occur on lettuce (McGehee et al., 2018; Stanghellini and Kronland, 1986). Samples of romaine lettuce with rot symptoms were collected from the hydroponic farm. The infected roots were rinsed three times with sterilized distilled water (SDW), dried on sterilized filter paper, and sliced into segments (about 0.5 cm in length), which were placed into Petri dishes (9 cm in diameter) containing V8 juice agar (V8A: 8% V8 juice and 1.5% agar powder) and cultured at 25°C for 2 days. The emerging hyphae were transferred to new Petri dishes containing V8A. After four rounds of sub-culturing, a total of 11 strains were isolated and all of them exhibited the same morphology. Strain KNU2301TP was purified via isolation of a single zoospore and stored at -80°C. The mycelia were non-pigmented. The hyphae obtained from a three-day-old culture grown in V8A were aseptate and the diameter of major hyphae was up to 7 µm. The filamentous sporangia were not to slightly inflated and formed dendroid-like branches. Vesicles containing zoospores were formed on the filamentous sporangia. The encysted zoospores were spherical with a diameter of 8.1 to10 µm (average 8.9 ± 0.6 µm; n = 50). These morphological characteristics of KNU2301TP were similar to those of a previously reported oomycete, Pythium dissotocum (Van der Plaats-Niterink 1981). The genomic DNA was extracted from mycelia cultured on V8A by a previously described extraction method (Chi et al. 2009). Sequences of internal transcribed spacer (ITS) region and cytochrome c oxidase subunit II (cox2) gene were amplified with paired primers ITS1/ITS4 and cox2_F/R, respectively (Callaghan et al., 2022; Hudspeth et al. 2000; White et al. 1990). The resulting sequences were deposited in GenBank (GenBank Accession Nos.; ITS: OQ683867; cox2: OQ700848). The sequences of ITS and cox2 gene of strain KNU2301TP were 99.61% and 100% identical to the sequences of ITS (MG719858) and cox2 gene (MG719859) of P. dissotocum strain YNP-3, respectively. Based on the result of the morphological characterization and sequence analysis, the strain KNU2301TP was identified as P. dissotocum. For Koch's postulates, 15 lettuce seedlings (eighteen-day-old) were inoculated by immersing the roots in a spore suspension (1 × 105 zoospores/ mL) and incubated at 25°C under 16/8 h light/dark cycles for 8 days. Fifteen plants of same age were treated with SDW in the same manner as a control The symptoms resembling those originally found at the farm were developed on the inoculated plants, but not on controls. The strain reisolated from the inoculated plants by same method mentioned above was confirmed as strain KNU2301TP by analysis of morphology and ITS and cox2 sequences. To our knowledge, this is the first report of root rot on hydroponically grown lettuce caused by P. dissotocum in Korea. Root rot on lettuce caused by P. dissotocum has been previously reported in USA, Canada, and Finland (McGehee et al. 2018; Stanghellini and Rasmussen 1994). Since lettuce is an important and popular leafy vegetable around the world, further work would focus on developing efficient strategies to manage this Pythium root rot disease.

3.
Gut Microbes ; 15(1): 2221811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305974

RESUMO

The prevalence and occurrence of mucin-degrading (MD) bacteria, such as Akkermansia muciniphila and Ruminococcus gnavus, is highly associated with human health and disease states. However, MD bacterial physiology and metabolism remain elusive. Here, we assessed functional modules of mucin catabolism, through a comprehensive bioinformatics-aided functional annotation, to identify 54 A. muciniphila genes and 296 R. gnavus genes. The reconstructed core metabolic pathways coincided with the growth kinetics and fermentation profiles of A. muciniphila and R. gnavus grown in the presence of mucin and its constituents. Genome-wide multi-omics analyses validated the nutrient-dependent fermentation profiles of the MD bacteria and identified their distinct mucolytic enzymes. The distinct metabolic features of the two MD bacteria induced differences in the metabolite receptor levels and inflammatory signals of the host immune cells. In addition, in vivo experiments and community-scale metabolic modeling demonstrated that different dietary intakes influenced the abundance of MD bacteria, their metabolic fluxes, and gut barrier integrity. Thus, this study provides insights into how diet-induced metabolic differences in MD bacteria determine their distinct physiological roles in the host immune response and the gut ecosystem.


Assuntos
Microbioma Gastrointestinal , Mucinas , Humanos , Multiômica , Ecossistema , Bactérias/genética
4.
Mycobiology ; 51(3): 178-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359959

RESUMO

The cell wall integrity (CWI) signaling pathway plays important roles in the dissemination and infection of several plant pathogenic fungi. However, its roles in the pepper fruit anthracnose fungus Colletotrichum scovillei remain uninvestigated. In this study, the major components of the CWI signaling pathway-CsMCK1 (MAPKKK), CsMKK1 (MAPKK), and CsMPS1 (MAPK)-were functionally characterized in C. scovillei via homology-dependent gene replacement. The ΔCsmck1, ΔCsmkk1, and ΔCsmps1 mutants showed impairments in fungal growth, conidiation, and tolerance to CWI and salt stresses. Moreover, ΔCsmck1, ΔCsmkk1, and ΔCsmps1 failed to develop anthracnose disease on pepper fruits due to defects in appressorium formation and invasive hyphae growth. These results suggest that CsMCK1, CsMKK1, and CsMPS1 play important roles in mycelial growth, conidiation, appressorium formation, plant infection, and stress adaption of C. scovillei. These findings will contribute to a better understanding of the roles of the CWI signaling pathway in the development of pepper fruit anthracnose disease.

5.
Microbiol Spectr ; : e0366022, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786576

RESUMO

The evolution of the bacterial phosphotransferase system (PTS) linked to glycolysis is dependent on the availability of naturally occurring sugars. Although bacteria exhibit sugar specificities based on carbon catabolite repression, the acquisition and evolvability of the cellular sugar preference under conditions that are suboptimal for growth (e.g., environments rich in a rare sugar) are poorly understood. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. We detected a minimal set of adaptive mutations in the d-fructose-specific PTS to render E. coli capable of d-tagatose utilization. These E. coli mutant strains lost the tight regulation of both the d-fructose and N-acetyl-galactosamine PTS following deletions in the binding site of the catabolite repressor/activator protein (Cra) upstream from the fruBKA operon and in the agaR gene, encoding the N-acetylgalactosamine (GalNAc) repressor, respectively. Acquired d-tagatose catabolic pathways then underwent fine-tuned adaptation via an additional mutation in 1-phosphofructose kinase to adjust metabolic fluxes. We determined the evolutionary trajectory at the molecular level, providing insights into the mechanism by which enteric bacteria evolved a substrate preference for the rare sugar d-tagatose. Furthermore, the engineered E. coli mutant strain could serve as an in vivo high-throughput screening platform for engineering non-phosphosugar isomerases to produce rare sugars. IMPORTANCE Microorganisms generate energy through glycolysis, which might have preceded a rapid burst of evolution, including the evolution of cellular respiration in the primordial biosphere. However, little is known about the evolvability of cellular sugar preferences. Here, we generated Escherichia coli mutants via a retro-aldol reaction to obtain progeny that can utilize the rare sugar d-tagatose. Consequently, we identified mutational hot spots and determined the evolutionary trajectory at the molecular level. This provided insights into the mechanism by which enteric bacteria evolved substrate preferences for various sugars, accounting for the widespread occurrence of these taxa. Furthermore, the adaptive laboratory evolution-induced cellular chassis could serve as an in vivo high-throughput screening platform for engineering tailor-made non-phosphorylated sugar isomerases to produce low-calorigenic rare sugars showing antidiabetic, antihyperglycemic, and antitumor activities.

6.
Plant Pathol J ; 38(6): 593-602, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36503188

RESUMO

Anthracnose, caused by the ascomycete fungus Colletotrichum scovillei, is a destructive disease in pepper. The fungus germinates and develops an infection structure called an appressorium on the plant surface. Several signaling cascades, including cAMP-mediated signaling and mitogen-activated protein kinase (MAPK) cascades, are involved in fungal development and pathogenicity in plant pathogenic fungi, but this has not been well studied in the fruit-infecting fungus C. scovillei. Ste50 is an adaptor protein interacting with multiple upstream components to activate the MAPK cascades. Here, we characterized the CsSTE50 gene of C. scovillei, a homolog of Magnaporthe oryzae MST50 that functions in MAPK cascades, by gene knockout. The knockout mutant ΔCsste50 had pleiotropic phenotypes in development and pathogenicity. Compared with the wild-type, the mutants grew faster and produced more conidia on regular agar but were more sensitive to osmotic stress. On artificial and plant surfaces, the conidia of the mutant showed significantly reduced germination and failed to form appressoria. The mutant was completely non-pathogenic on pepper fruits with or without wounds, indicating that pre-penetration and invasive growth were both defective in the mutant. Our results show that the adaptor protein CsSTE50 plays a role in vegetative growth, conidiation, germination, appressorium formation, and pathogenicity in C. scovillei.

7.
Front Cell Infect Microbiol ; 12: 1003195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262188

RESUMO

The ascomycete fungus Colletotrichum scovillei causes severe anthracnose disease on the fruit of sweet pepper and chili pepper (Capsicum annuum L.) worldwide. Understanding the biology of C. scovillei would improve the management of fruit anthracnose diseases. The cyclic adenosine monophosphate (cAMP) signaling pathway regulates diverse cellular and physiological processes in several foliar fungal pathogens. We investigated the roles of the cAMP signaling pathway in C. scovillei using pharmaceutical and genetic approaches. Exogenous cAMP was found to increase conidiation, appressorium formation, and anthracnose disease development in C. scovillei. CsAc1, CsCap1, and CsPdeH, which regulate the intracellular cAMP level, were deleted by homology-dependent gene replacement. Expectedly, the intracellular cAMP level was significantly decreased in ΔCsac1 and ΔCscap1 but increased in ΔCspdeh. All three deletion mutants exhibited serious defects in multiple fungal developments and pathogenicity, suggesting regulation of the intracellular cAMP level is important for C. scovillei. Notably, exogenous cAMP recovered the defect of ΔCsac1 in appressorium development, but not penetration, which was further recovered by adding CaCl2. This result suggests that CsAc1 is associated with both the cAMP and Ca2+ signaling pathways in C. scovillei. ΔCscap1 produced morphologically abnormal conidia with reduced tolerance to thermal stress. ΔCspdeh was completely defective in conidiation in C. scovillei, unlike other foliar pathogens. Taken together, these results demonstrate the importance of cAMP signaling in anthracnose disease caused by C. scovillei.


Assuntos
Capsicum , Frutas , Cloreto de Cálcio , Doenças das Plantas/microbiologia , Capsicum/genética , Capsicum/microbiologia , AMP Cíclico , Transdução de Sinais , Monofosfato de Adenosina , Preparações Farmacêuticas
8.
Curr Dev Nutr ; 6(8): nzac110, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36060223

RESUMO

Inflammatory bowel disease (IBD) is an idiopathic inflammatory disease. Environmental sanitization, modern lifestyles, advanced medicines, ethnic origins, host genetics and immune systems, mucosal barrier function, and the gut microbiota have been delineated to explain how they cause mucosal inflammation. However, the pathogenesis of IBD and its therapeutic targets remain elusive. Recent studies have highlighted the importance of the human gut microbiota in health and disease, suggesting that the pathogenesis of IBD is highly associated with imbalances of the gut microbiota or alterations of epithelial barrier function in the gastrointestinal (GI) tract. Moreover, diet-induced alterations of the gut microbiota in the GI tract modulate immune responses and perturb metabolic homeostasis. This review summarizes recent findings on IBD and its association with diet-induced changes in the gut microbiota; furthermore, it discusses how diets can modulate host gut microbes and immune systems, potentiating the impact of personalized diets on therapeutic targets for IBD.

9.
Plant Pathol J ; 38(4): 345-354, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35953054

RESUMO

NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of ΔCsnox2 and ΔCsnoxr, other than ΔCsnox1 and ΔCsnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that ΔCsnox2 and ΔCsnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by ΔCsnox2 and ΔCsnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium- mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.

10.
Front Cell Infect Microbiol ; 12: 861915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558103

RESUMO

Colletotrichum scovillei is the major anthracnose fungus of sweet pepper and chili pepper (Capsicum annuum L.), causing significant losses in the yield and quality of the pepper fruits. Molecular mechanisms governing development and pathogenicity have been widely studied in many foliar fungal pathogens, but the information on fruit diseases is still limited. In this study, we determined the functional roles of the dual-specificity tyrosine phosphorylation-regulated kinase CsPOM1 in C. scovillei. Knockout mutant for CsPOM1 gene was obtained via homology-dependent gene replacement. The ΔCspom1 mutant exhibited a reduction in vegetative growth on osmotic stress, surface hydrophobicity, and conidiation compared with wild-type. Conidia of the ΔCspom1 mutant were already two-celled before inoculation on an induction surface, indicating that CsPOM1 negatively regulates conidial cell division. The ΔCspom1 mutant, similar to wild-type, formed appressoria on the plant surface, but was significantly reduced on hydrophobic coverslips, probably due to a defect in the recognition of surface hydrophobicity. Treatment of conidia with cutin monomers restored appressorium formation on hydrophobic coverslips in the ΔCspom1 mutant. On pepper fruits, the ΔCspom1 mutant exhibited delayed penetration and invasive growth, leading to significantly reduced virulence. Collectively, the results showed that CsPOM1 is important for stress tolerance, conidiation, surface hydrophobicity, appressorium formation, and virulence in C. scovillei.


Assuntos
Capsicum , Colletotrichum , Capsicum/genética , Capsicum/microbiologia , Colletotrichum/genética , Doenças das Plantas/microbiologia , Esporos Fúngicos , Virulência
11.
Front Microbiol ; 13: 770119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283826

RESUMO

The phytopathogenic fungus Colletotrichum scovillei, belonging to the Colletotrichum acutatum species complex, causes severe anthracnose disease on several fruits, including chili pepper (Capsicum annuum). However, the molecular mechanisms underlying the development and pathogenicity of Colletotrichum scovillei are unclear. The conserved Fus3/Kss1-related MAPK regulates fungal development and pathogenicity. Here, the role of CsPMK1, orthologous to Fus3/Kss1, was characterized by phenotypic comparison of a target deletion mutant (ΔCspmk1). The mycelial growth and conidiation of ΔCspmk1 were normal compared to that of the wild type. ΔCspmk1 produced morphologically abnormal conidia, which were delayed in conidial germination. Germinated conidia of ΔCspmk1 failed to develop appressoria on inductive surfaces of hydrophobic coverslips and host plants. ΔCspmk1 was completely defective in infectious growth, which may result from failure to suppress host immunity. Furthermore, ΔCspmk1 was impaired in nuclear division and lipid mobilization during appressorium formation, in response to a hydrophobic surface. CsPMK1 was found to interact with CsHOX7, a homeobox transcription factor essential for appressorium formation, via a yeast two-hybridization analysis. Taken together, these findings suggest that CsPMK1 is required for fungal development, stress adaptation, and pathogenicity of C. scovillei.

12.
Insects ; 13(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055919

RESUMO

This study presented biological and economic data for the mass-rearing of Orius minutus in Korea. Simplifying the mass-rearing process through an alternative diet and an artificial oviposition substrate is a prerequisite for enhancing the usability of this insect as a biological control agent. We compare the hatch rate of O. minutus eggs deposited on a plant substrate with that of eggs deposited on two artificial substrates, cork sheets and rubber. The results indicate that cork sheet is the most cost-effective artificial oviposition substrate for the mass-rearing of O. minutus. We also examine five feeding treatments that included two types of brine shrimp eggs and eggs of Ephestia cautella to compare the number of eggs laid in the fifth generation. We found no significant difference between the two treatment groups; 61.3 eggs were laid in the treatment group fed iron-coated brine shrimp and moth eggs, and 67.4 eggs were laid in the control group. The plant-free model developed in our study can reduce rearing costs by 70.5% compared to the conventional mass-rearing model.

13.
Mycobiology ; 50(6): 467-474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36721786

RESUMO

Autophagy serves as a survival mechanism and plays important role in nutrient recycling under conditions of starvation, nutrient storage, ad differentiation of plant pathogenic fungi. However, autophagy-related genes have not been investigated in Colletotrichum scovillei, a causal agent of pepper fruit anthracnose disease. ATG8 is involved in autophagosome formation and is considered a marker of autophagy. Therefore, we generated an ATG8 deletion mutant, ΔCsatg8, via homologous recombination to determine the functional roles of CsATG8 in the development and virulence of C. scovillei. Compared with the wild-type, the deletion mutant ΔCsatg8 exhibited a severe reduction in conidiation. Conidia produced by ΔCsatg8 were defective in survival, conidial germination, and appressorium formation. Moreover, conidia of ΔCsatg8 showed reduced lipid amount and PTS1 selectivity. A virulence assay showed that anthracnose development on pepper fruits was reduced in ΔCsatg8. Taken together, our results suggest that CsATG8 plays various roles in conidium production and associated development, and virulence in C. scovillei.

14.
Proteomics ; 22(3): e2100125, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34596327

RESUMO

Akkermansia muciniphila is a prominent mucin-degrading bacterium that acts as a keystone species in regulating the human gut microbiota. Despite recently increasing research into this bacterium and its relevance to human health, a high-resolution database of its functional proteins remains scarce. Here, we provide a proteomic overview of A. muciniphila grown in different nutrient conditions ranging from defined to complex. Of 2318 protein-coding genes in the genome, we identified 841 (40%) that were expressed at the protein level. Overall, proteins involved in energy production and carbohydrate metabolism indicate that A. muciniphila relies mainly on the Embden-Meyerhof-Parnas pathway, and produces short-chain fatty acids through anaerobic fermentation in a nutrient-specific manner. Moreover, this bacterium possesses a broad repertoire of glycosyl hydrolases, together with putative peptidases and sulfatases, to cleave O-glycosylated mucin. Of them, putative mucin-degrading enzymes (Amuc_1220, Amuc_1120, Amuc_0052, Amuc_0480, and Amuc_0060) are highly abundant in the mucin-supplemented media. Furthermore, A. muciniphila uses mucin-derived monosaccharides as sources of energy and cell wall biogenesis. Our dataset provides nutrient-dependent global proteomes of A. muciniphila ATCC BAA-835 to offer insights into its metabolic functions that shape the composition of the human gut microbiota via mucin degradation.


Assuntos
Mucinas , Proteômica , Akkermansia , Humanos , Mucinas/metabolismo , Nutrientes , Verrucomicrobia/metabolismo
15.
Plant Pathol J ; 37(6): 607-618, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34897252

RESUMO

The pepper anthracnose fungus, Colletotrichum scovillei, causes severe losses of pepper fruit production in the tropical and temperate zones. RAC1 is a highly conserved small GTP-binding protein in the Rho GTPase family. This protein has been demonstrated to play a role in fungal development, and pathogenicity in several plant pathogenic fungi. However, the functional roles of RAC1 are not characterized in C. scovillei causing anthracnose on pepper fruits. Here, we generated a deletion mutant (ΔCsrac1) via homologous recombination to investigate the functional roles of CsRAC1. The ΔCsrac1 showed pleiotropic defects in fungal growth and developments, including vegetative growth, conidiogenesis, conidial germination and appressorium formation, compared to wild-type. Although ΔCsrac1 was able to develop appressoria, it failed to differentiate appressorium pegs. However, ΔCsrac1 still caused anthracnose disease with significantly reduced rate on wounded pepper fruits. Further analyses revealed that ΔCsrac1 was defective in tolerance to oxidative stress and suppression of host-defense genes. Taken together, our results suggest that CsRAC1 plays essential roles in fungal development and pathogenicity in C. scovillei-pepper fruit pathosystem.

16.
Fungal Genet Biol ; 157: 103636, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742890

RESUMO

Pex7 is a shuttling receptor that imports matrix proteins with a type 2 peroxisomal targeting signal (PTS2) to peroxisomes. The Pex7-mediated PTS2 protein import contributes to crucial metabolic processes such as the fatty acid ß-oxidation and glucose metabolism in a number of fungi, but cellular roles of Pex7 between the import of PTS2 target proteins and metabolic processes have not been fully understood. In this study, we investigated the functional roles of CsPex7, a homolog of the yeast Pex7, by targeted gene deletion in the pepper anthracnose fungus Colletotrichum scovillei. CsPex7 was required for carbon source utilization, scavenging of reactive oxygen species, conidial production, and disease development in C. scovillei. The expression of fluorescently tagged PTS2 signal of hexokinases and 3-ketoacyl-CoA thiolases showed that peroxisomal localization of the hexokinase CsGlk1 PTS2 is dependent on CsPex7, but those of the 3-ketoacyl-CoA thiolases are independent on CsPex7. In addition, GFP-tagged CsPex7 proteins were intensely localized to the peroxisomes on glucose-containing media, indicating a role of CsPex7 in glucose utilization. Collectively, these findings indicate that CsPex7 selectively recognizes specific PTS2 signal for import of PTS2-containing proteins to peroxisomes, thereby mediating peroxisomal targeting efficiency of PTS2-containing proteins in C. scovillei. On pepper fruits, the ΔCspex7 mutant exhibited significantly reduced virulence, in which excessive accumulation of hydrogen peroxide was observed in the pepper cells. We think the reduced virulence results from the abnormality in hydrogen peroxide metabolism of the ΔCspex7 mutant. Our findings provide insight into the cellular roles of CsPex7 in PTS2 protein import system.


Assuntos
Sinais de Orientação para Peroxissomos , Peroxissomos , Colletotrichum , Receptor 2 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo
17.
mBio ; 12(4): e0162021, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34425710

RESUMO

Colletotrichum scovillei, an ascomycete phytopathogenic fungus, is the main causal agent of serious yield losses of economic crops worldwide. The fungus causes anthracnose disease on several fruits, including peppers. However, little is known regarding the underlying molecular mechanisms involved in the development of anthracnose caused by this fungus. In an initial step toward understanding the development of anthracnose on pepper fruits, we retrieved 624 transcription factors (TFs) from the whole genome of C. scovillei and comparatively analyzed the entire repertoire of TFs among phytopathogenic fungi. Evolution and proliferation of members of the homeobox-like superfamily, including homeobox (HOX) TFs that regulate the development of eukaryotic organisms, were demonstrated in the genus Colletotrichum. C. scovillei was found to contain 10 HOX TF genes (CsHOX1 to CsHOX10), which were functionally characterized using deletion mutants of each CsHOX gene. Notably, CsHOX1 was identified as a pathogenicity factor required for the suppression of host defense mechanisms, which represents a new role for HOX TFs in pathogenic fungi. CsHOX2 and CsHOX7 were found to play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study provides a molecular basis for understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid in the development of novel approaches for disease management. IMPORTANCE The ascomycete phytopathogenic fungus, Colletotrichum scovillei, causes serious yield loss on peppers. However, little is known about molecular mechanisms involved in the development of anthracnose caused by this fungus. We analyzed whole-genome sequences of C. scovillei and isolated 624 putative TFs, revealing the existence of 10 homeobox (HOX) transcription factor (TF) genes. We found that CsHOX1 is a pathogenicity factor required for the suppression of host defense mechanism, which represents a new role for HOX TFs in pathogenic fungi. We also found that CsHOX2 and CsHOX7 play essential roles in conidiation and appressorium development, respectively, in a stage-specific manner in C. scovillei. Our study contributes to understanding the mechanisms associated with the development of anthracnose on fruits caused by C. scovillei, which will aid for initiating novel approaches for disease management.


Assuntos
Capsicum/microbiologia , Colletotrichum/crescimento & desenvolvimento , Colletotrichum/genética , Genes Homeobox , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética , Colletotrichum/patogenicidade , Mecanismos de Defesa , Genoma Fúngico , Doenças das Plantas/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento
18.
Plant Pathol J ; 37(3): 307-314, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34111920

RESUMO

Pepper (Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei, a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei. By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis, a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei.

19.
Plant Pathol J ; 37(2): 87-98, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33866752

RESUMO

To establish an infection, fungal pathogens must recognize diverse signals from host surfaces. The rice blast fungus, Magnaporthe oryzae, is one of the best models studying host-pathogen interactions. This fungus recognizes physical or chemical signals from the host surfaces and initiates the development of an infection structure called appressorium. Here, we found that protein MoAfo1(appressorium formation, MGG_10422) was involved in sensing signal molecules such as cutin monomers and long chain primary alcohols required for appressorium formation. The knockout mutant (ΔMoafo1) formed a few abnormal appressoria on the onion and rice sheath surfaces. However, it produced normal appressoria on the surface of rice leaves. MoAfo1 localized to the membranes of the cytoplasm and vacuole-like organelles in conidia and appressoria. Additionally, the ΔMoafo1 mutant showed defects in appressorium morphology, appressorium penetration, invasive growth, and pathogenicity. These multiple defects might be partially due to failure to respond properly to oxidative stress. These findings broaden our understanding of the fungal mechanisms at play in the recognition of the host surface during rice blast infection.

20.
Plant Pathol J ; 35(6): 564-574, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832037

RESUMO

Like many fungal pathogens, the conidium and appressorium play key roles during polycyclic dissemination and infection of Magnaporthe oryzae. Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein. In animalia, RanBPM has been implicated in apoptosis, cell morphology, and transcription. However, the functional roles of RanBPM, encoded by MGG_00753 (named MoRBP9) in M. oryzae, have not been elucidated. Here, the deletion mutant ΔMorbp9 for MoRBP9 was generated via homologous recombination to investigate the functions of this gene. The ΔMorbp9 exhibited normal conidial germination and vegetative growth but dramatically reduced conidiation compared with the wild type, suggesting that MoRBP9 is involved in conidial production. ΔMorbp9 conidia failed to produce appressoria on hydrophobic surfaces, whereas ΔMorbp9 still developed aberrantly shaped appressorium-like structures at hyphal tips on the same surface, suggesting that MoRBP9 is involved in the morphology of appressorium-like structures from hyphal tips and is critical for development of appressorium from germ tubes. Taken together, our results indicated that MoRBP9 played a pleiotropic role in polycyclic dissemination and infection-related morphogenesis of M. oryzae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...